8.002, 7.998, 7.801, 7.797, 7.789, 7.784, 7.783, 7.778, 7.772, 7.764, and 7.761. This spectrum was simulated with the following chemical shifts and coupling constants: $\nu_{a} = \delta$ 8.018, $v_b = \delta$ 7.780, $J_{AB} = 7.6$ Hz, $J_{AB'} = 1.2$ Hz, $J_{BB'} = 6.7$ Hz, and $J_{AA'} = 0.8$ Hz (Figure 3). The ¹H-NMR spectrum of the collected diadduct fractions was complex (more than 100 transitions from δ 7.5–8.2) resulting from the many regiochemical possibilities for adding a second benzyne

molecule to $[C_{60} + C_6H_4]$. The ¹³C[¹H]-NMR spectrum (Figure 4) showed 19 transitions. A tabulation of the peaks is given in the figure caption. The C_{2v} structure, corresponding to benzyne addition across the pyracyclene bonds, should give rise to 20 peaks in the spectrum; seven independent carbon atoms sit on mirror planes and 13 have unit occupancy. Correspondence between the proposed structure and the NMR spectrum would be achieved if the missing line, one of the expected weak signals, is isochronous with the peak at δ 143.30, thus contributing to its unique intensity. Symmetry considerations force us to conclude that addition occurs across bonds between fused six-membered rings. The coupled spectrum reveals that the peaks at δ 124.22 and δ 130.76 correspond to carbons carrying the protons. The signal at δ 78.75 is assigned to the quaternary bridgehead carbons of the fullerene cage which are the sites of attachment of the benzyne moiety. The upfield value confirms that the structure is the closed, rather than the open [10]annulene, isomer.¹⁵ Complete analysis of the connectivity via the INADEQUATE sequence is in progress.16

The monoadduct of C_{60} and benzyne is yellow in color; the UV/vis spectrum in *n*-hexane showed λ_{max} at 320 nm with a weak visible band at 428 nm. The FTIR spectrum (KBr pellet) showed C-H absorption bands at 2924 and 2854 cm⁻¹. Additional frequencies were recorded at 1458, 1278, and 1024 cm⁻¹.

In one anomalous reaction of benzyne and buckminsterfullerene, we observed two AA'BB' spin systems in the aromatic region for the separated product that gave rise to a predominant ion (m/z 796) in the mass spectrometer. The major product showed eight major transitions at δ 7.627, 7.620, 7.616, 7.609, 7.480, 7.473, 7.468, and 7.462. We are investigating the possibility that even the monoaddition of benzyne to C_{60} may be regiononspecific and subtly dependent on reaction conditions.

The isolated monoaddition product, corresponding to the downfield AA'BB' spin system, crystallized from CS_2 as dark red spars (mp >400 °C). Structure analysis by X-ray diffraction is in progress.

Acknowledgment. We thank Stanley Dostal for his assistance. This work was supported by the National Science Foundation (CHE-9114265, CHE-87-21768, and DIR 8912612). S.H.H. thanks BASF for a contribution to a National Needs Fellowship. J.M. thanks Purdue University Department of Chemistry for a QUEST Fellowship. D.D. was supported by a postdoctoral fellowship from Michelin from where she was on leave.

(17) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.

 (18) Sample preparation for ¹³C-NMR as shown to be useful for the higher fullerenes. See: Ettl, R.; Chao, I.; Diederich, F.; Whetten, R. L. Nature 1991, 353, 149.

Synthesis of the 9,10-Acetonide of 9-Dihydro-FK-506¹

Robert E. Ireland.* Thomas K. Highsmith, Laura D. Gegnas, and James L. Gleason

Department of Chemistry, McCormick Road, University of Virginia, Charlottesville, Virginia 22901

Received June 30, 1992

Summary: The synthesis of the analog FKANAL (I) of the immunosuppressant FK-506 in which the central features are the spiroenone system B which masks the α -allyl aldol portion of FK-506 and the spiroketal D which mimics the α -keto amide portion is described.

In the course of work directed toward the total synthesis of the immunosuppressant FK-506,² it appeared that the spiroketal I (FKANAL³) might be a close, stable analog of the natural product itself. Many of the salient features that effect the binding⁴ of FK-506 to its receptor FKBP are preserved in this analog and the effector domain⁴ remains identical to that of the natural product. The synthesis of this material became the first target of this work

Figure 1. Parts for the synthesis of FK-506 analog.

and this goal has now been achieved.

The main features of the retrosynthetic plan for the analog I are the vinyl bromide A, the spiroenone B, and the spiroketal D (Figure 1). The assemblage of these parts

⁽¹⁵⁾ Vogel, E. Pure Appl. Chem. 1982, 54, 1015. Diederich, F.; Ettl, R.; Rubin, Y.; Whetten, R. L.; Beck, R. D.; Alvarez, M. M.; Anz, S. J.; Sensharma, D.; Wudl, F.; Khemani, K. C.; Koch, A. Science 1991, 252, 548

⁽¹⁶⁾ Hawkins, J. M.; Loren, S.; Meyer, A.; Nunlist, R. J. Am. Chem. Soc. 1991, 113, 7770.

⁽¹⁾ No reprints of this article are available.

⁽²⁾ Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031-5033. For previous syntheses, see: (a) Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. P.; Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157-1159. (b) Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am. Chem.
 Soc. 1990, 112, 5583-5601. (c) Jones, T. K.; Reamer, R. A.; Desmond, R.;
 Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998-3017. Jones, A. B.;
 Villabos, A.; Linde, R. G.; Danishefsky, S. J. J. Org. Chem. 1990, 55, 3726-3767. 2786-2797

⁽³⁾ FKANAL = FK(-506) ANAL(og).
(4) Bierer, B. E.; Somers, P. K.; Wandless, T. J.; Burakoff, S. J.; Schreiber, S. L. Science 1990, 250, 556-559.

Scheme I. Synthesis of Spiroenone Ba

(a) (Z)-crotyldiisopinocampheylborane (derived ^a Conditions: from (-)- α -pinene), THF, -78 °C, then H₂O₂, NaOH; (b) Li, NH₃, -78 °C, (80%, 2 steps); (c) TsCl, pyridine, 25 °C; (d) NaH, Et₂O, 0 °C; (e) 5-lithiofurfuryl methoxyisopropyl ether, BF₃ OEt₂, THF, -78 °C, then HCl, THF/H₂O, 25 °C (55% 3 steps); (f) MCPBA, CH_2Cl_2 , 0 °C, then $CH_2C(OCH_3)CH_3$, HCl, 0 \rightarrow 25 °C (70%).

Scheme II. Synthesis of the Linker E^a

^aConditions: (a) $Cl_3CC(=NH)OBn$, TfOH, hexane/ CH_2Cl_2 , rt; (b) LiAlH₄, Et₂O, 0 °C, (93%, 2 steps); (c) TsCl, DMAP, Pyr (82%); (d) HCCLi-EDA, DMSO, rt (83%); (e) BuLi, TMSCl, THF, -78 \rightarrow rt; (f) LiDBB, THF, -78 °C, (82%, 2 steps); (g) Ph₃P, I₂, imidazole, CH₂Cl₂, rt, (86%); (h) PhSO₂Na, DMF, 65 °C; (i) TBAF, THF, rt (83%; 2 steps).

together with the linking units L-(-)-pipecolic acid C and the acetylenic sulfone E follows the sequence $B + E \rightarrow BE$ $+ D \rightarrow BED + A \rightarrow BEDA + C \rightarrow BEDAC + lactamiza$ tion/fragmentation/deblocking \rightarrow FKANAL (I). This strategy is synthetically quite flexible, for by modification of any of these small parts a different FK-506 analog may be prepared by application of a similar reaction sequence.

The synthesis of the spiroenone B follows the precedence established in earlier work from these laboratories⁵ (Scheme I). Thus, crotylation of benzylglycolaldehyde 1 according to the procedure of Brown⁶ and then lithium/ ammonia debenzylation afforded an 80% overall yield of the diastereomerically pure diol 2. The oxide 4, readily prepared from this diol 2 but generally not isolated, gave the new diol 5 in 55% overall yield after treatment with 5-lithiofurfuryl methoxyisopropyl ether and then mild hydrolysis. Oxidation of this furan according to the procedure of DeShong⁷ and then acetonide formation gave the desired spiroenone B in 70% overall yield.

The sulfone E was prepared on a large scale in 37% overall yield from methyl (R)-(-)-3-hydroxy-2-methylpropionate as shown in Scheme II. This sulfone E was used for carboalumination and then conjugate addition to the spiroenone B (Scheme IV). This process, carried out in the fashion established earlier⁸ that was so successful with other conjugated enones, led to the saturated ketone 21 in 82% yield. After reduction of the ketone 21, the hydroxyl group was blocked and the new sulfone 23 was isolated in 93% yield.

- (5) Ireland, R. E.; Wipf, P.; Miltz, W.; Vanasse, B. J. Org. Chem. 1990, 55, 1423-1424
- (6) Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576. (7) DeShong, P.; Waltermire, R. E.; Ammon, H. L. J. Am. Chem. Soc.

(8) Ireland, R. E.; Wipf, P. J. Org. Chem. 1990, 55, 1425-1426. Wipf, P.; Smitrovich, J.; Moon, C. J. Org. Chem. 1992, 57, 3178-3186.

Scheme III. Synthesis of Vinyl Bromide A^a

^a Conditions: (a) 1,3-butadiene, TiCl₄, CH₂Cl₂, 0 ^oC (85%); (b) LiOH, H₂O₂, THF, 0 °C (98%); (c) MCPBA, CCl₄, 0 °C \rightarrow 25 °C, then Et₃N, SiO₂, 70 °C (65%); (d) 'BuPh₂SiCl, imidazole, DMF, 25 °C (90%); (e) MeOH, NaHCO₃, 25 °C; (f) MeOTf, 2,6-di^tBuPyr, CH₂Cl₂, 25 °C (98%, 2 steps); (g) LiAlH₄, Et₂O, 0 °C (100%); (h) (COCl)₂, DMSO; NEt₃, CH₂Cl₂, -78 °C (93%); (i) NaH, N₂CHP-(O)(OMe)₂, THF, -78 °C (83%); (i) n-BuLi, Mel, THF, -78 °C (86%); (k) Cp₂Zr(H)Cl, THF, 40 °C, then N-bromosuccinimide (83%).

At this juncture, the previously prepared spiroketal ester D^9 was converted to the corresponding aldehyde by hydrogenolysis of the benzyl ether and then oxidation of the resulting alcohol. Condensation of this aldehyde with the lithium salt of the sulfone 23 led in 74% yield to a mixture of the expected four diastereoisomeric hydroxy sulfones 24. Oxidation of these hydroxy sulfones 24 and then removal¹⁰ of the sulfone grouping afforded the stereoisomerically pure ketone 26 in 84% overall yield. Completion of this phase of the synthesis was then readily accomplished by chelate-controlled reduction¹¹ of the ketone group and methylation of the resulting alcohol 27. The BED portion 28 thus formed was available in 67% yield after the recovered alcohol 27 was recycled through the methylation process.

For the next stage it was necessary to prepare the vinyl bromide portion A. After exploration of several routes for the formation of the cyclohexyl portion of the vinyl bromide A in enantiopure fashion, the use of the Diels-Alder condensation sequence (Scheme III) proved to be the most efficient. Condensation between butadiene and the acryloyl ester of (S)-N-methyl-2-hydroxysuccinimide (10) (Helmchen procedure¹²) afforded the crystalline adduct 11 on a large scale in 85% yield. The 98% enantiomerically pure acid 12, obtained after removal of the chiral auxiliary, was then oxidized with MCPBA. After the resulting mixture of epoxides was directly lactonized by treatment with triethylamine and silica gel, the hydroxy lactone 13^{2c,13a} from the α -epoxide was isolated in 65% overall yield. Conversion of this hydroxy lactone 13 to the desired vinyl bromide A then follows precedence from the work of others.^{2c,13}

S. L. J. Org. Chem. 1989, 54, 4267-4268.

^{1988. 110. 1901-1910.}

 ⁽⁹⁾ Ireland, R. E.; Wipf, P. Tetrahedron Lett. 1989, 30, 919-923.
 (10) Smith, A. B.; Hale, K. J.; McCauley, J. P. Tetrahedron Lett. 1989, 30. 5579-5582.

 ⁽¹¹⁾ Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226-2227. Elliott, J.;
 (11) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226-2227. Elliott, J.;
 (12) Poll, Warren, S. Tetrahedron Lett. 1989, 30, 601-604.
 (12) Poll, T.; Abdel Hady, A. F.; Karge, R.; Linz, G.; Weetman, J.;
 Helmchen, G. Tetrahedron Lett. 1989, 30, 5595-5598. Helmchen, G.;

Karge, R.; Weetman, J. Mod. Synth. Methods 1986, 4, 262-306.
 (13) (a) Corey, E. J.; Huang, H. Tetrahedron Lett. 1989, 30, 5235-5238.
 (b) Ragan, J. A.; Nakatsuka, M.; Smith, D. B.; Vahling, D. E.; Schreiber,

Scheme IV. Synthesis of FKANAL (I)^a

^cConditions: (a) (i) A, Me₃Al, Cp₂ZrCl₂, ClCH₂CH₂Cl, rt; (ii) C₄H₉ CCLi (2 equiv), CuCN (1 equiv), THF, Et₂O, -23 °C; (iii) spiroenone B, THF, -23 °C (82%); (b) Li(*Bu)₃BH, THF, -78 °C; H₂O₂, NaOH (100%); (c) TBSCl, imidazole, DMAP, DMF, rt (93%); (d) (i) benzyl ether D, H₂, Pd(OH)₂, EtOH, (99%); (ii) COCl₂, DMSO; NEt₃, CH₂Cl₂, -78 °C (96%); (iii) **23**, BuLi, THF, -78 °C (74%); (e) Dess-Martin periodinane, CH₂Cl₂; (f) Bu₃SnH, AIBN, PhMe, reflux (84%); (g) CeCl₃-7H₂O, MeOH, rt \rightarrow 78 °C; NaBH₄, (84%); (h) MeOTf, 2,6-di*BuPyr, CH₂Cl₂, (80%, 49% conversion); (i) OsO₄, NMO, THF, H₂O; NaIO₄ (90%); (j) vinyl bromide A, 'BuLi, THF; MgBr₂, -78 °C (57%); (k) Dess-Martin periodinane, CH₂Cl₂, (78%); (l) CeCl₃-7H₂O, MeOH, rt \rightarrow 78 °C; NaBH₄, (99%); (m) 'BOC-pipecolic acid, DCC, DMAP, CH₂Cl₂, -15 °C, 24 h (100%); (n) (i) LiOH, THF/H₂O; (i) TESOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (iii) HOAc, THF/H₂O; (iv) 2-chloro-1-methylpyridinium iodide, NEt₃, CH₂Cl₂, reflux (68%); (o) TBAF (5 equiv), THF, 0 °C (57%); (p) Ph₃P, I₂, imidazole, PhMe, 70 °C (96%); (q) C₈K, ZnCl₂·AgOAc, THF, rt (84%); (r) 5% HF/MeCN, rt (64%, 51% conversion).

With the vinyl bromide A in hand, the coupling with the BED unit 28 was explored (Scheme IV). Cleavage of the terminal olefin in the BED unit 28 with osmium tetraoxide/sodium periodate easily revealed the aldehyde which was used directly in the Grignard reaction with the magnesium derivative of the vinyl bromide A. Attempts to better control the stereochemical outcome of this condensation were unsuccessful and as a result the mixture (1:2) of epimeric alcohols 29 was oxidized and then reduced under chelation control¹¹ to give the desired (S)-oriented hydroxyl function. Finally, addition of the last building block, N-t-BOC-pipecolic acid C, was efficiently accomplished^{2c} through the coupling of this (S) alcohol with the acid C in the presence of DCC/DMAP. With all the parts of the analog I now together, it remained to close the macrolactam ring of the BEDAC unit 30 and then remove the various blocking groups.

After saponification of the ester grouping and cleavage of the N-t-BOC blocking group in the BEDAC intermediate 30, the resulting amino acid was cyclized in 68% overall yield through a modification of the Merck group's conditions^{2c} for a similar such lactamization. The resulting macrocycle 31 was then ready for fragmentation⁵ to reveal the desired α -allyl aldol portion of the molecule. The silylated hydroxyl group of the spiroketal acetonide 31 was first converted to the iodide 33 which was fragmented according to previously described⁵ procedures with potassium-graphite doped with zinc chloride/silver acetate.¹⁴ This fragmentation process was realized in a very satisfactory manner and the α -allyl aldol system 34 was readily available. Finally, removal of the last silyl blocking group gave the desired FKANAL (I) analog in 64% yield after the recovered starting material was recycled once. This analog I is currently undergoing biological testing and the results will be reported elsewhere. In the meantime, further synthetic work is underway to modify this synthetic sequence so as to prepare FK-506 itself.

Acknowledgment. Support for this work through a grant (GM41983) from the National Institutes of Health is gratefully acknowledged. The biological testing of FKANAL and other synthetic intermediates is currently under investigation at the laboratories of Smithkline Beecham Pharmaceutical Co. through the courtesy of Dr. Brian Metcalf.

Supplementary Material Available: Experimental details and characterization data (19 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽¹⁴⁾ Fürstner, A.; Weidmann, H. J. Org. Chem. 1989, 54, 2307-2311.